Inflorescence development in tomato: gene functions within a zigzag model

نویسندگان

  • Claire Périlleux
  • Guillaume Lobet
  • Pierre Tocquin
چکیده

Tomato is a major crop plant and several mutants have been selected for breeding but also for isolating important genes that regulate flowering and sympodial growth. Besides, current research in developmental biology aims at revealing mechanisms that account for diversity in inflorescence architectures. We therefore found timely to review the current knowledge of the genetic control of flowering in tomato and to integrate the emerging network into modeling attempts. We developed a kinetic model of the tomato inflorescence development where each meristem was represented by its "vegetativeness" (V), reflecting its maturation state toward flower initiation. The model followed simple rules: maturation proceeded continuously at the same rate in every meristem (dV); floral transition and floral commitment occurred at threshold levels of V; lateral meristems were initiated with a gain of V (ΔV) relative to the V level of the meristem from which they derived. This last rule created a link between successive meristems and gave to the model its zigzag shape. We next exploited the model to explore the diversity of morphotypes that could be generated by varying dV and ΔV and matched them with existing mutant phenotypes. This approach, focused on the development of the primary inflorescence, allowed us to elaborate on the genetic regulation of the kinetic model of inflorescence development. We propose that the lateral inflorescence meristem fate in tomato is more similar to an immature flower meristem than to the inflorescence meristem of Arabidopsis. In the last part of our paper, we extend our thought to spatial regulators that should be integrated in a next step for unraveling the relationships between the different meristems that participate to sympodial growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato

Inflorescence development is a key factor of plant productivity, as it determines flower number. Therefore, understanding the mechanisms that regulate inflorescence architecture is critical for reproductive success and crop yield. In this study, a new mutant, vegetative inflorescence (mc-vin), was isolated from the screening of a tomato (Solanum lycopersicum L.) T-DNA mutant collection. The mc-...

متن کامل

CaJOINTLESS is a MADS-box gene involved in suppression of vegetative growth in all shoot meristems in pepper

In aiming to decipher the genetic control of shoot architecture in pepper (Capsicum spp.), the allelic late-flowering mutants E-252 and E-2537 were identified. These mutants exhibit multiple pleiotropic effects on the organization of the sympodial shoot. Genetic mapping and sequence analysis indicated that the mutants are disrupted at CaJOINTLESS, the orthologue of the MADS-box genes JOINTLESS ...

متن کامل

Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato.

There are two divergent fructokinase isozymes, Frk1 and Frk2 in tomato (Lycopersicon esculentum Mill.) plants. To investigate the physiological functions of each isozyme, the expression of each fructokinase mRNA was independently suppressed in transgenic tomato plants, and the respective phenotypes were evaluated. Suppression of Frk1 expression resulted in delayed flowering at the first inflore...

متن کامل

The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1.

Vegetative and reproductive phases alternate regularly during sympodial growth in tomato. In wild-type 'indeterminate' plants, inflorescences are separated by three vegetative nodes. In 'determinate' plants homozygous for the recessive allele of the SELF-PRUNING (SP) gene, sympodial segments develop progressively fewer nodes until the shoot is terminated by two consecutive inflorescences. We sh...

متن کامل

Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators.

Plant productivity depends on inflorescences, flower-bearing shoots that originate from the stem cell populations of shoot meristems. Inflorescence architecture determines flower production, which can vary dramatically both between and within species. In tomato plants, formation of multiflowered inflorescences depends on a precisely timed process of meristem maturation mediated by the transcrip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014